WebBUGS >> Main page Recent changes | Show source History | |
Built-in models:Unconditional linear growth curve models | ||
---|---|---|
ModelA growth curve model is a two-level model. For the first level, we have \[ y_{it}=b_{i0}+b_{i1}t+e_{it} \] where, \(y_{it}\) is the observed data for subject \(i\) at time \(t\), \(b_{i0}\) and \(b_{i1}\) are intercept and slope, respectively, for subject \(i\). At the second level, we have \[ b_{i0} = \beta_{0}+v_{i0} \] \[ b_{i1} = \beta_{1}+v_{i1} \] We further assume that \(Var(e_{it})=\sigma^2\) and \(\mathbf{b}_i=(b_{i0}, b_{i1})'\) follows a bivariate normal distribution with mean 0 and covariance matrix D. Codemodel{ # Model specification for linear growth curve model for (i in 1:N){ b[i,1:2]~dmnorm(beta[1:2], Inv_D[1:2,1:2]) for (t in 1:4){ y[i, t] ~ dnorm(muY[i,t], Inv_Sig_e2) muY[i,t]<-b[i,1]+b[i,2]*t } } #Priors for model parameter for (i in 1:2){ beta[i] ~ dnorm(0, 1.0E-6) } Inv_D[1:2,1:2]~dwish(R[1:2,1:2], 2) R[1,1]<-1 R[2,2]<-1 R[2,1]<-R[1,2] R[1,2]<-0 Inv_Sig_e2 ~ dgamma(.001, .001) Sig_e2 <- 1/Inv_Sig_e2 D[1:2,1:2]<-inverse(Inv_D[1:2,1:2]) rho_LS <- D[1,2]/sqrt(D[1,1]*D[2,2]) }
|
||
Powered by LionWiki. Last changed: 2014/11/11 21:46 Erase cookies | Show source History |