WebBUGS >> Main page Recent changes | Show source History | |
Built-in models:Unconditional robust linear growth curve models | ||
---|---|---|
ModelA growth curve model is a two-level model. For the first level, we have yit=bi0+bi1t+eit where, yit is the observed data for subject i at time t, bi0 and bi1 are intercept and slope, respectively, for subject i. At the second level, we have bi0=β1+vi0 bi1=β2+vi1 We bi=(bi0,bi1)′ follows a bivariate normal distribution with mean 0 and covariance matrix D. We further assume that eit follows a t distribution with mean 0, scale σ2 and degrees of freedom ν . Codemodel{ # Model specification for linear growth curve model for (i in 1:N){ b[i,1:2]~dmnorm(beta[1:2], Inv_D[1:2,1:2]) for (t in 1:4){ y[i, t] ~ dt(muY[i,t], Inv_Sig_e2, v) muY[i,t]<-b[i,1]+b[i,2]*t } } #Priors for model parameter for (i in 1:2){ beta[i] ~ dnorm(0, 1.0E-6) } v~dunif(0,100) Inv_D[1:2,1:2]~dwish(R[1:2,1:2], 2) R[1,1]<-1 R[2,2]<-1 R[2,1]<-R[1,2] R[1,2]<-0 Inv_Sig_e2 ~ dgamma(.001, .001) Sig_e2 <- 1/Inv_Sig_e2 D[1:2,1:2]<-inverse(Inv_D[1:2,1:2]) rho_LS <- D[1,2]/sqrt(D[1,1]*D[2,2]) }
|
||
Powered by LionWiki. Last changed: 2014/11/11 21:47 Erase cookies | Show source History |