WebBUGS
Conducting Bayesian Analysis Online Using BUGS
WebBUGS
>>
Main page
Recent changes
Syntax
History
Built-in models:Tobit regression
New name
!Model The Tobit model is a model proposed by James Tobin (Tobin, 1958) to describe the relationship between a limited dependent variable \(y_{i}\) and independent variables \(\mathbf{x}_{i}\). This model is widely used in econometrics and biometrics. To better understand the model, we can assume there is a latent (unobservable) variable \(y^{*}\) underlying the observed variable \(y\). The relationship between \(y^{*}\) and \(y\) is given by {{%% \[ y_{i}=\begin{cases} y_{i}^{*} & \text{if }y_{i}^{*}>\tau \\\\ \tau & \text{otherwise} \end{cases} \] %%}} In Tobin (1958), the threshold \(\tau=0\). The latent variable can be predicted using the independent variables as in {{%% \[ y_{i}^{*}=\beta_{0}+\beta_{1}x_{1i}+\ldots+\beta_{q}x_{qi}+e_{i} \] %%}} with \(e_{i}\sim N(0,\sigma^{2})\). !Code {{ model{ for (i in 1:N){ limit[i]<-M*(1-ind[i]) - 1000000*ind[i] mu[i]<-b[1]+b[2]*(x1[i]-mean(x1[]))+b[3]*(x2[i]-mean(x2[])) y[i]~dnorm(mu[i],pre.phi)I(limit[i],) } for (i in 1:3){ b[i]~dnorm(0, 1.0E-6) } pre.phi~dnorm(.001,.001) phi<-1/pre.phi } }}
Password
Summary of changes
Powered by
LionWiki
. Last changed: 2014/11/12 02:46
Erase cookies
Syntax
History
WebBUGS